metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tetraaquabis[4-(4H-1,2,4-triazol-4-yl)benzoato- κN^1]nickel(II) decahydrate

Weixuan Sun,^a Yaqin Yu,^a Guanjun Wang^b* and Xiaohui Wu^c

^aDepartment of Preventive Medicine, School of Public Health, Jilin University, Changchun 130021, People's Republic of China, ^bDepartment of Hematology, the First Hospital of Jilin University, Changchun 130021, People's Republic of China, and ^cSchool of Public Health, Jilin University, Changchun 130021, People's Republic of China

Correspondence e-mail: doctorwanggj@163.com

Received 19 November 2011; accepted 28 November 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.049; wR factor = 0.119; data-to-parameter ratio = 12.9.

In the title compound, $[Ni(C_9H_6N_3O_2)_2(H_2O)_4]\cdot 10H_2O$, the Ni^{II} ion lies on a twofold rotation axis and displays a slightly distorted octahedral geometry defined by two N atoms from two monodentate 4-(1,2,4-triazol-4-yl)benzoate ligands and four water molecules, two of which also lie on the twofold rotation axis. In the crystal, the complex molecules and uncoordinated water molecules are linked *via* intermolecular $O-H\cdots N$ and $O-H\cdots O$ hydrogen bonds, forming a three-dimensional supramolecular network. $\pi-\pi$ interactions between the benzene rings provide additional stability of the crystal packing [centroid–centroid distance = 3.792 (2) Å].

Related literature

For general background to the applications and structures of metal coordination polymers, see: Rowsell & Yaghi (2005); Su *et al.* (2010); Wang *et al.* (2009); Zhang & Chen (2008). For a related structure, see: Cui & Zhao (2011).

Experimental

Crystal data $[Ni(C_9H_6N_3O_2)_2(H_2O)_4]$ ·10H₂O $M_r = 687.25$ Monoclinic, C2/c

a = 25.840 (3) Åb = 7.8664 (8) Åc = 16.8013 (17) Å $\beta = 112.712 (1)^{\circ}$ $V = 3150.3 (6) Å^{3}$ Z = 4Mo K α radiation

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2001) *T*_{min} = 0.83, *T*_{max} = 0.90

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.119$ S = 1.043079 reflections 238 parameters 14 restraints 8290 measured reflections 3079 independent reflections 2273 reflections with $I > 2\sigma(I)$ $R_{int} = 0.057$

 $\mu = 0.70 \text{ mm}^{-1}$

 $0.22 \times 0.20 \times 0.19 \text{ mm}$

T = 293 K

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.55 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.63 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O3-H3A\cdotsO1^{i}$	0.84 (2)	1.93 (2)	2.751 (3)	167 (4)
$O4-H4A\cdots O1^{ii}$	0.84(2)	1.86 (2)	2.692 (3)	172 (4)
$O5-H5A\cdots O8$	0.82(2)	1.94 (2)	2.752 (3)	169 (4)
$O5-H5B\cdots O7$	0.83(2)	1.84 (2)	2.670 (3)	171 (4)
$O6-H6A\cdots O7$	0.82(2)	1.95 (2)	2.773 (4)	178 (4)
$O6-H6B\cdots O10$	0.84(2)	1.91 (3)	2.747 (4)	177 (6)
$O7-H7A\cdots O2^{iii}$	0.84(2)	1.84 (2)	2.674 (3)	170 (4)
$O7 - H7B \cdots O9^{iv}$	0.84(2)	1.88 (2)	2.715 (4)	171 (4)
$O8-H8A\cdots N3^{v}$	0.82(2)	2.16(2)	2.943 (3)	160 (4)
$O8-H8B\cdots O2^{vi}$	0.85(2)	1.92(2)	2.763 (3)	175 (4)
$O9-H9A\cdotsO1^{ii}$	0.84(2)	1.93 (2)	2.751 (3)	169 (4)
$O9-H9B\cdots O8$	0.85 (2)	1.93 (2)	2.757 (3)	164 (4)

Symmetry codes: (i) $-x + \frac{3}{2}, -y + \frac{3}{2}, -z + 2$; (ii) $-x + \frac{3}{2}, -y + \frac{1}{2}, -z + 2$; (iii) $-x + \frac{3}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$; (iv) x, y + 1, z; (v) $x, -y + 1, z - \frac{1}{2}$; (vi) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The authors thank Jilin University for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2491).

References

Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cui, F.-H. & Zhao, P.-Z. (2011). Acta Cryst. E67, m1341-m1342.
- Rowsell, J. L. C. & Yaghi, O. M. (2005). Angew. Chem. Int. Ed. 44, 4670–4679. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Su, S.-Q., Guo, Z.-Y., Li, G.-H., Deng, R.-P., Song, S.-Y., Qin, C., Pan, C.-L., Guo, H.-D., Gao, F., Wang, S. & Zhang, H.-J. (2010). *Dalton Trans.* **39**, 9123– 9130.
- Wang, G.-H., Li, Z.-G., Jia, H.-Q., Hu, N.-H. & Xu, J.-W. (2009). Acta Cryst. E65, m1568–m1569.
- Zhang, J.-P. & Chen, X.-M. (2008). J. Am. Chem. Soc. 130, 6010-6017.

supplementary materials

Acta Cryst. (2012). E68, m10 [doi:10.1107/S1600536811051063]

Tetraaquabis[4-(4*H*-1,2,4-triazol-4-yl)benzoato- κN^1]nickel(II) decahydrate

W. Sun, Y. Yu, G. Wang and X. Wu

Comment

Recently, the chemists have devoted themselves to design and synthesize coordination polymers, not only due to their potential applications in the realm of gas adsorption and separation, catalysis, magnetism, luminescence, host–guest chemistry *etc*, but also for their aesthetic and often complicated architectures and topologies (Su *et al.*, 2010; Wang *et al.*, 2009). It is well known that carboxylic acids are excellent building blocks for the construction of coordination polymers because the carboxylate groups may induce core aggregation and link these discrete clusters into an extended framework by virtue of its bridging ability (Rowsell & Yaghi, 2005; Zhang & Chen, 2008). Taking these into account, we chose a carboxylate ligand, 4-(1,2,4-triazol-4-yl)benzoic acid, generating the title compound, which is reported here.

In the title compound, the Ni^{II} ion lies on a twofold rotation axis and displays a slightly distorted octahedral geometry defined by two N atoms from two 4-(1,2,4-triazol-4-yl)benzoate ligands and four water molecules, two of which lie on the twofold rotation axis (Fig. 1). The bond lengths and angles are in a normal range (Cui & Zhao, 2011). In the crystal, the complex molecules and uncoordinated water molecules are linked *via* intermolecular O—H···N and O—H···O hydrogen bonds, forming a three-dimensional supramolecular network (Fig. 2). π - π interactions between the benzene rings, with a centroid–centroid distance of 3.792 (2) Å, provide additional stability of the crystal packing.

Experimental

The synthesis was performed under hydrothermal conditions. A mixture of Ni(CH₃COO)₂.4H₂O (0.2 mmol, 0.050 g), 4-(1,2,4-triazol-4-yl)benzoic acid (0.4 mmol, 0.075 g), NaOH (0.4 mmol, 0.016 g) and H₂O (15 ml) in a 25 ml stainless steel reactor with a Teflon liner was heated from 293 to 443 K in 2 h and a constant temperature was maintained at 443 K for 72 h. After the mixture was cooled to 298 K, pink crystals of the title compound were obtained from the reaction.

Refinement

H atoms on C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and with $U_{iso}(H) = 1.2U_{eq}(C)$. H atoms bonded to O atoms were located in a difference Fourier map and refined with O—H distance restraints of 0.85 (2) Å and with $U_{iso}(H) = 0.054 \text{ Å}^2$.

Figures

Fig. 1. The molecular structute of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry code: (i) 1-x, y, 3/2-z.]

Fig. 2. View of the three-dimensional structure of the title compound built by hydrogen bonds (dashed lines).

Tetraaquabis[4-(4*H*-1,2,4-triazol-4-yl)benzoato- κN^1]nickel(II) decahydrate

Crystal data [Ni(C₉H₆N₃O₂)₂(H₂O)₄]·10H₂O $M_r = 687.25$ Monoclinic, C2/c Hall symbol: -C 2yc a = 25.840 (3) Å b = 7.8664 (8) Å c = 16.8013 (17) Å $\beta = 112.712$ (1)° V = 3150.3 (6) Å³ Z = 4

Data collection

Bruker APEXII CCD diffractometer	3079 independent reflections
Radiation source: fine-focus sealed tube	2273 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.057$
ϕ and ω scans	$\theta_{\text{max}} = 25.9^{\circ}, \ \theta_{\text{min}} = 2.5^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2001)	$h = -31 \rightarrow 31$
$T_{\min} = 0.83, T_{\max} = 0.90$	$k = -6 \rightarrow 9$
8290 measured reflections	$l = -20 \rightarrow 17$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.049$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.119$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.04	$w = 1/[\sigma^2(F_o^2) + (0.0451P)^2 + 2.4003P]$ where $P = (F_o^2 + 2F_c^2)/3$
3079 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
238 parameters	$\Delta \rho_{max} = 0.55 \text{ e} \text{ Å}^{-3}$
14 restraints	$\Delta \rho_{\rm min} = -0.63 \ e \ {\rm \AA}^{-3}$

F(000) = 1448 $D_x = 1.449 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3079 reflections $\theta = 1.0-25.9^{\circ}$ $\mu = 0.70 \text{ mm}^{-1}$ T = 293 KBlock, pink $0.22 \times 0.20 \times 0.19 \text{ mm}$

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Ni1	0.5000	0.59822 (8)	0.7500	0.01918 (19)
C1	0.83480 (12)	0.4306 (4)	1.04342 (19)	0.0186 (7)
C2	0.79863 (12)	0.3835 (4)	0.96082 (19)	0.0200 (7)
H2	0.8126	0.3236	0.9257	0.024*
C3	0.74225 (13)	0.4242 (4)	0.93015 (19)	0.0205 (7)
H3	0.7182	0.3890	0.8755	0.025*
C4	0.72201 (12)	0.5180 (4)	0.98169 (19)	0.0163 (7)
C5	0.75769 (13)	0.5702 (4)	1.0635 (2)	0.0209 (7)
Н5	0.7441	0.6351	1.0975	0.025*
C6	0.81360 (12)	0.5246 (4)	1.0939 (2)	0.0194 (7)
H6	0.8374	0.5575	1.1491	0.023*
C7	0.89538 (13)	0.3748 (4)	1.0778 (2)	0.0196 (7)
C8	0.62534 (12)	0.5537 (4)	0.86818 (19)	0.0192 (7)
H8	0.6334	0.5222	0.8209	0.023*
С9	0.63313 (13)	0.6112 (4)	0.9971 (2)	0.0231 (7)
Н9	0.6480	0.6275	1.0565	0.028*
N1	0.66358 (10)	0.5587 (3)	0.95053 (15)	0.0170 (6)
N2	0.57580 (10)	0.5986 (3)	0.86385 (15)	0.0193 (6)
N3	0.58082 (11)	0.6353 (4)	0.94733 (16)	0.0230 (7)
01	0.92384 (9)	0.3974 (3)	1.15821 (13)	0.0218 (5)
02	0.91424 (9)	0.3070 (3)	1.02773 (14)	0.0302 (6)
O3	0.5000	0.8594 (4)	0.7500	0.0294 (8)
O4	0.5000	0.3349 (4)	0.7500	0.0228 (7)
O5	0.54970 (9)	0.5800 (3)	0.67831 (14)	0.0211 (5)
O6	0.70477 (12)	0.6665 (4)	0.74921 (19)	0.0430 (7)
O7	0.60752 (10)	0.8271 (3)	0.64103 (15)	0.0280 (6)
08	0.52147 (10)	0.3127 (3)	0.56372 (15)	0.0255 (6)
09	0.60244 (10)	0.1461 (3)	0.69923 (16)	0.0315 (6)
O10	0.69525 (11)	0.3274 (4)	0.70686 (17)	0.0363 (7)
H3A	0.5254 (13)	0.921 (4)	0.784 (2)	0.054*
H4A	0.5231 (14)	0.265 (4)	0.783 (2)	0.054*
H5A	0.5411 (17)	0.510 (4)	0.639 (2)	0.054*
H5B	0.5653 (16)	0.656 (4)	0.661 (3)	0.054*
H6A	0.6758 (12)	0.715 (5)	0.718 (2)	0.054*
H6B	0.7026 (18)	0.562 (3)	0.738 (3)	0.054*
H7A	0.6022 (17)	0.833 (5)	0.5885 (14)	0.054*
H7B	0.6041 (18)	0.929 (3)	0.654 (3)	0.054*
H8A	0.5304 (17)	0.319 (6)	0.5218 (19)	0.054*
H8B	0.4879 (10)	0.279 (5)	0.550 (3)	0.054*
H9A	0.5962 (17)	0.146 (6)	0.7445 (18)	0.054*
H9B	0.5732 (12)	0.191 (5)	0.662 (2)	0.054*
H10A	0.7237 (12)	0.268 (5)	0.727 (2)	0.054*
H10B	0.6695 (14)	0.275 (5)	0.712 (3)	0.054*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.0147 (3)	0.0216 (3)	0.0196 (3)	0.000	0.0049 (2)	0.000
C1	0.0117 (15)	0.0238 (18)	0.0189 (16)	0.0005 (13)	0.0044 (13)	0.0017 (14)
C2	0.0179 (17)	0.0281 (19)	0.0144 (16)	0.0013 (14)	0.0069 (13)	-0.0005 (14)
C3	0.0155 (16)	0.0305 (19)	0.0121 (15)	-0.0005 (14)	0.0014 (12)	0.0006 (14)
C4	0.0105 (15)	0.0197 (16)	0.0172 (16)	0.0021 (13)	0.0035 (13)	0.0023 (14)
C5	0.0188 (17)	0.0258 (19)	0.0174 (16)	0.0041 (14)	0.0062 (13)	-0.0042 (14)
C6	0.0153 (16)	0.0223 (17)	0.0170 (16)	-0.0007 (13)	0.0024 (13)	-0.0029 (14)
C7	0.0145 (16)	0.0217 (18)	0.0214 (17)	0.0004 (13)	0.0057 (14)	0.0031 (15)
C8	0.0144 (16)	0.0263 (18)	0.0148 (15)	0.0000 (13)	0.0034 (13)	-0.0012 (14)
C9	0.0170 (17)	0.037 (2)	0.0146 (16)	0.0034 (15)	0.0055 (13)	-0.0029 (15)
N1	0.0123 (13)	0.0229 (15)	0.0136 (13)	0.0014 (11)	0.0026 (10)	-0.0014 (11)
N2	0.0151 (13)	0.0272 (15)	0.0155 (13)	-0.0008 (12)	0.0058 (11)	-0.0021 (12)
N3	0.0144 (14)	0.0370 (17)	0.0149 (14)	0.0017 (12)	0.0026 (11)	-0.0043 (13)
01	0.0167 (11)	0.0254 (12)	0.0180 (11)	0.0023 (10)	0.0010 (9)	0.0010 (10)
02	0.0169 (13)	0.0498 (17)	0.0221 (13)	0.0123 (12)	0.0056 (10)	0.0020 (12)
03	0.0210 (19)	0.0179 (18)	0.032 (2)	0.000	-0.0087 (15)	0.000
04	0.0194 (18)	0.0150 (17)	0.0248 (19)	0.000	-0.0015 (14)	0.000
05	0.0195 (12)	0.0248 (13)	0.0213 (12)	-0.0055 (10)	0.0106 (10)	-0.0034 (10)
06	0.0341 (17)	0.0381 (17)	0.0489 (18)	0.0012 (14)	0.0073 (14)	0.0007 (15)
07	0.0318 (14)	0.0289 (14)	0.0249 (13)	-0.0017 (12)	0.0126 (12)	0.0015 (12)
08	0.0190 (13)	0.0378 (15)	0.0209 (12)	-0.0077 (11)	0.0090 (10)	-0.0023 (11)
09	0.0255 (14)	0.0388 (15)	0.0315 (15)	0.0064 (12)	0.0123 (12)	0.0047 (13)
O10	0.0282 (16)	0.0390 (17)	0.0373 (16)	-0.0016 (12)	0.0080 (13)	0.0061 (13)

Geometric parameters (Å, °)

Ni1—O3	2.054 (3)	С8—Н8	0.9300
Ni1—O4	2.071 (3)	C9—N3	1.300 (4)
Ni1—O5	2.077 (2)	C9—N1	1.370 (4)
Ni1—N2	2.145 (2)	С9—Н9	0.9300
C1—C6	1.387 (4)	N2—N3	1.388 (3)
C1—C2	1.391 (4)	ОЗ—НЗА	0.836 (18)
C1—C7	1.510 (4)	O4—H4A	0.840 (18)
C2—C3	1.382 (4)	O5—H5A	0.822 (19)
С2—Н2	0.9300	O5—H5B	0.835 (19)
C3—C4	1.385 (4)	O6—H6A	0.824 (19)
С3—Н3	0.9300	O6—H6B	0.838 (19)
C4—C5	1.389 (4)	O7—H7A	0.840 (18)
C4—N1	1.430 (4)	O7—H7B	0.844 (19)
C5—C6	1.381 (4)	O8—H8A	0.823 (18)
С5—Н5	0.9300	O8—H8B	0.848 (19)
С6—Н6	0.9300	O9—H9A	0.836 (19)
C7—O2	1.243 (4)	О9—Н9В	0.847 (19)
C7—O1	1.277 (4)	O10—H10A	0.824 (19)
C8—N2	1.303 (4)	O10—H10B	0.817 (19)

C8—N1	1.355 (4)		
O3—Ni1—O4	180.000 (2)	C5—C6—C1	121.1 (3)
O3—Ni1—O5 ⁱ	93.97 (6)	С5—С6—Н6	119.5
O4—Ni1—O5 ⁱ	86.03 (7)	С1—С6—Н6	119.5
O3—Ni1—O5	93.97 (7)	02—C7—O1	124.0 (3)
O4—Ni1—O5	86.03 (7)	O2—C7—C1	119.0 (3)
O5 ⁱ —Ni1—O5	172.07 (13)	O1—C7—C1	116.9 (3)
O3—Ni1—N2	89.93 (7)	N2—C8—N1	111.3 (3)
04—Ni1—N2	90.07 (7)	N2—C8—H8	124.4
O5 ⁱ —Ni1—N2	92.24 (9)	N1—C8—H8	124.4
O5—Ni1—N2	87.77 (9)	N3—C9—N1	111.2 (3)
O3—Ni1—N2 ⁱ	89.93 (7)	N3—C9—H9	124.4
O4—Ni1—N2 ⁱ	90.07 (7)	N1—C9—H9	124.4
O5 ⁱ —Ni1—N2 ⁱ	87.77 (9)	C8—N1—C9	103.8 (3)
O5—Ni1—N2 ⁱ	92.24 (9)	C8—N1—C4	128.2 (3)
N2—Ni1—N2 ⁱ	179.85 (16)	C9—N1—C4	128.1 (2)
C6—C1—C2	118.7 (3)	C8—N2—N3	107.1 (2)
C6—C1—C7	121.1 (3)	C8—N2—Ni1	126.1 (2)
C2—C1—C7	120.1 (3)	N3—N2—Ni1	126.73 (18)
C3—C2—C1	121.0 (3)	C9—N3—N2	106.7 (2)
С3—С2—Н2	119.5	Ni1—O3—H3A	125 (3)
С1—С2—Н2	119.5	Ni1—O4—H4A	131 (3)
C2—C3—C4	119.3 (3)	Ni1—O5—H5A	118 (3)
С2—С3—Н3	120.4	Ni1—O5—H5B	130 (3)
С4—С3—Н3	120.4	H5A—O5—H5B	103 (4)
C3—C4—C5	120.6 (3)	H6A—O6—H6B	110 (4)
C3—C4—N1	119.4 (3)	H7A—O7—H7B	103 (4)
C5—C4—N1	120.0 (3)	H8A—O8—H8B	112 (4)
C6—C5—C4	119.3 (3)	H9A—O9—H9B	103 (4)
С6—С5—Н5	120.4	H10A—O10—H10B	108 (4)
C4—C5—H5	120.4		
C6—C1—C2—C3	-2.1 (5)	C3—C4—N1—C8	-17.2 (5)
C7—C1—C2—C3	175.9 (3)	C5—C4—N1—C8	163.8 (3)
C1—C2—C3—C4	2.0 (5)	C3—C4—N1—C9	162.5 (3)
C2—C3—C4—C5	-0.3 (5)	C5—C4—N1—C9	-16.5 (5)
C2-C3-C4-N1	-179.3 (3)	N1-C8-N2-N3	-0.1 (4)
C3—C4—C5—C6	-1.3 (5)	N1	-176.2 (2)
N1—C4—C5—C6	177.7 (3)	O3—Ni1—N2—C8	-109.7 (3)
C4—C5—C6—C1	1.2 (5)	O4—Ni1—N2—C8	70.3 (3)
C2-C1-C6-C5	0.4 (5)	O5 ⁱ —Ni1—N2—C8	156.4 (3)
C7—C1—C6—C5	-177.5 (3)	O5—Ni1—N2—C8	-15.7 (3)
C6—C1—C7—O2	-172.3 (3)	O3—Ni1—N2—N3	75.0 (2)
C2-C1-C7-O2	9.8 (5)	O4—Ni1—N2—N3	-105.0 (2)
C6—C1—C7—O1	9.3 (5)	O5 ⁱ —Ni1—N2—N3	-19.0 (3)
C2-C1-C7-O1	-168.6 (3)	O5—Ni1—N2—N3	169.0 (3)
N2-C8-N1-C9	-0.1 (4)	N1—C9—N3—N2	-0.4 (4)

supplementary materials

N2—C8—N1—C4 N3—C9—N1—C8 N3—C9—N1—C4 Symmetry codes: (i) $-x+1$, y , $-z+3/2$.	179.7 (3) 0.3 (4) -179.5 (3)		C8—N2—N3—C9 Ni1—N2—N3—C9		0.3 (4) 176.4 (2)
Hydrogen-bond geometry (Å, °)					
D—H···A		D—H	H···A	$D \cdots A$	D—H···A
O3—H3A···O1 ⁱⁱ		0.84 (2)	1.93 (2)	2.751 (3)	167 (4)
O4—H4A…O1 ⁱⁱⁱ		0.84 (2)	1.86 (2)	2.692 (3)	172 (4)
O5—H5A…O8		0.82 (2)	1.94 (2)	2.752 (3)	169 (4)
O5—H5B…O7		0.83 (2)	1.84 (2)	2.670 (3)	171 (4)
O6—H6A…O7		0.82 (2)	1.95 (2)	2.773 (4)	178 (4)
O6—H6B…O10		0.84 (2)	1.91 (3)	2.747 (4)	177 (6)
O7—H7A···O2 ^{iv}		0.84 (2)	1.84 (2)	2.674 (3)	170 (4)
O7—H7B…O9 ^v		0.84 (2)	1.88 (2)	2.715 (4)	171 (4)
O8—H8A…N3 ^{vi}		0.82 (2)	2.16 (2)	2.943 (3)	160 (4)
O8—H8B····O2 ^{vii}		0.85 (2)	1.92 (2)	2.763 (3)	175 (4)
O9—H9A…O1 ⁱⁱⁱ		0.84 (2)	1.93 (2)	2.751 (3)	169 (4)
О9—Н9В…О8		0.85 (2)	1.93 (2)	2.757 (3)	164 (4)
Symmetry codes: (ii) $-x+3/2$, $-y+3/2$, $-z+2$; (iii) $-x+3/2$, $-y+1/2$, $-z+2$; (iv) $-x+3/2$, $y+1/2$, $-z+3/2$; (v) x , $y+1$, z ; (vi) x , $-y+1$, $z-1/2$; (vii) $x-1/2$, $-y+1/2$, $z-1/2$.					

Fig. 1

Fig. 2